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THE STABILITY AND MULTIPLICITY OF THE MONOTONIC LAGRANGIAN GRID

I. INTRODUCTION

Particle-based simulations have become progressively more important over the
last few decades owing to the tremendous advances in computer technology. Many
of these techniques, including molecular dynamics (MD) [1], smooth particle hydro-
dynamics (SPH) (2], and Direct Simulation Monte Carlo (DSMC) [3], require that
interactions or collisions be considered only between particles which are close in phys-
ical space. The local nature of the interactions makes it possible to drastically reduce
the computational cost required in these simulations. For a system of particles in-
teracting through pairwise forces, the computational cost for a simulation, in which
forces are calculated between all pairs of particles, scales as O(N?). If the range of
the interaction falls off quickly, the cost can be reduced to scale as O(N). Research,
primarily in the area of MD, has led to the development of a number of excellent al-
gorithms for identifying and tracking neighboring particles. Many of these algorithms
are based on the use of linked lists, neighbor lists, and trees.

Recently, alternative particle tracking techniques based on the Monotonic La-
grangian Grid (MLG) [4] have been developed. The MLG is a multidimensional data
structure in which objects which are close in physical space are assigned sets of in-
dices which are close in logical or integer space. An advantage of the MLG vis-a-vis
most other approaches is related to the relative locality of all computations and thus
a relative computational advantage on distributed memory parallel computers.

The locations of the objects within the MLG data structure are determined by a
set of monotonicity conditions on the physical coordinates. As an example, consider
a system of particles in tw;) dimensions. The coordinates, velocities, and other at-

tributes of the particles can be stored in a set of two-dimensional arrays z(N;, N,),
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Y(Nzy, Ny), vo(Nz, Ny), etc., where N = N, x N, is the total number of particles. The
particles are said to be in MLG order when the coordinates satisfy the following sets

of inequalities

z(1,5) S z(i +1,5) 1<i<N; -1 (all 5), (1a)

y(3,5) Sy(t,5+1) 1<j<N, -1 (all 2). (1b)

For a system of particles which are in MLG order, particles which are close in physical
space have indices (z,j) which are close in logical or integer space. Identification of
the neighbors of a given particle is carried out by searching a specified region of the
index space. The maximum index offset N, required to identify all pairs of interacting
particles is determined by the density of the system and the cutoff distance R, of the
interaction. Although it is almost impossible to guarantee that a given choice for N,
will ensure that all interacting pairs of particles are found, previous work has shown
that, for reasonably small values of N., the probability of missed interactions can be
made vanishingly small [5]. A timing analysis of the MLG on various test problems
shows that it performs well at identifying all pairs of interacting particles [6].

Until recently, the MLG has been used primarily in MD simulations [7-10]. Ap-
plications have included the study of shock-induced detonations in energetic materials
[7], (N2), dimer formation [8], and shock-defect interaction in Lennard-Jones solids
[9]. The MLG has also been used in related problems in battle management [11}.

Although the MLG was originally developed for particle tracking in MD, the
greatest utility may lie in DSMC applications [13-16]. DSMC is a particle-based
technique used to model high Knudsen number flow, (Kn = A/L > 0.1), where A is
the mean free path of the gas molecules and L is the smallest characteristic physical

dimension of the system. Under these conditions, solutions of the Navier-Stokes



equations give physically incorrect results. The DSMC technique is not based on the
Boltzmann equation, but can be shown to give results that are consistent with it.

In a DSMC simulation, particle motions are modeled deterministically, whereas
binary collisions between particles are treated statistically. In the standard DSMC
approach, physical space is divided into cells and collision pairs are chosen randomly
from particles belonging to the same cell. Macroscopic properties are calculated in
each cell by taking the appropriate averages of particle quantities within the cells.
There are a number of disadvantages to this Eulerian cell-based approach, particularly
when there are large spatial or temporal variations in the density of the system or
complex geometries are involved. Since DSMC is inherently a statistical technique,
large errors can be associated with cells which contain small numbers of particles. One
of the difficulties involves partitioning space in such a way so as to have a relatively
constant number of particles in each cell. A second difficulty, particularly in the
case of non-orthogonal or unstructured grids, is the assignment of the particles to the
proper cells. In an MLG-based DSMC code, the locations of the particles can be used
to define the physical grid. The DSMC-MLG approach provides both automatic grid
refinement for transient flows and ensures that each physical cell contains exactly the
same number of particles. This last condition is not strictly necessary in a DSMC
calculation, but is advantageous since it leads to increased accuracy of the solution,
simplified coding, and more efficient parallelization [16].

Since the MLG was first introduced, it was known that the MLG ordering for a
given spatial distribution of objects is not unique. This is consistent with Eqgs. (1)
since the number of coordinate inequalities used to define the MLG order is less than
the number of degrees of freedom of the system. Figure 1 shows that there can be sig-
nificant variation in the quality of the MLG orderings, where the quality is a measure

of how well the MLG ordering corresponds to the physical ordering of the system. For .



both MD and DSMC simulations, it is advantageous to work with high-quality MLG
orderings. In MD simulations this follows from the fact that the computational cost
associated with the evaluation of the short-range interactions is proportional to the
volume of index space that must be searched. In DSMC calculations, the validity of
the results diminishes when poorly-structures MLG orderings are used since random
collision pairs may involve particles that are no longer close in physical space.

The variation in MLG quality for a single collection of node locations has led
to the development of stochastic grid regularization (SGR) [12], an efficient tech-
nique for optimizing the structure of an MLG. A single iteration of SGR consists of:
(1) Randomly displacing nodes in space, retaining information about the positions
of the unperturbed nodes, (2) Exchanging data between adjacent perturbed nodes
until monotonicity conditions are satisfied for the displaced node positions, and (3)
Starting from the MLG ordering established in step (2) for the perturbed node posi-
tions, exchanging data between adjacent nodes until the monotonicity conditions are
satisfied for the unperturbed node positions.

The perturbed node positions are obtained by independently choosing displace-
ments along each coordinate axis from a uniform random distribution. The mag-
nitude of the maximum node displacement is the critical parameter in SGR. The
optimal choice for the maximum node displacement is approximately one-half the av-
erage internode separation [12]. Multiple iterations of the SGR in a single simulation
timestep may further improve the grid structure. In addition to being straightforward
and relatively easy to apply, one of the primary advantages of SGR is that it tends
to restructure only the most poorly structured regions of the grid while leaving the
majority of the well-structured regions relatively unchanged.

Previously we have shown that SGR is effective at restructuring an MLG [12],

but it was not explained why SGR works so well. Critical to our explanation for the



success of SGR is the concept of MLG stability. The basic idea proposed in this paper
is that SGR allows the system to access the more stable MLG’s which also tend to be
well-structured. Our definition of MLG stability is different from standard definitions
of stability. In this context, we mean that an MLG is stable if the MLG inequalities
are not violated for small displacements of the nodes.

Before addressing the questions of stability, we first attempt to make theoretical
estimates of the number of allowed MLG orderings. In addition, for small systems
of nodes, all possible MLG orderings are generated. These results are important not
only because they demonstrate the richness of the MLG data structure, but because
they provide us with an opportunity to study the properties of a complete distribution
of MLG orderings. Next, several grid diagnostics are developed and the concept of
grid stability is introduced. We show that poorly structured regions of the grids tend
to be unstable and that the use of SGR leads to more stable grids. Finally, the grid
diagnostics are applied to the complete sets of MLG orderings to show that not only
are the well-structured grids more stable, but that the majority of the MLG’s are

both poorly structured and extremely unstable.

II. ESTIMATES OF MLG MULTIPLICITIES

In all but certain special cases, many MLG’s may be found for a given set of
node locations. In this section, we establish upper bounds on thé number of MLG
orderings for a given set of nodes and explicitly generate all possible MLG orderings
for small systems in two dimensions. For simplicity and clarity, all derivations and
numerical experiments described in this section are for the case of a two-dimensional
MLG, although they can be genera,lized— to higher-dimensional systems.

A theoretical estimate of the upper limit on the number of allowed MLG orderings,

Tmaz, can be derived for a set of N = N; x N, nodes. First, assume that the



coordinates of the nodes are not degenerate, i.e., no two nodes have the same z or y
coordinates. This assumption is justified in applications such as molecular dynamics
where the spatial coordinates take on a continuous range of values and the probability
of two particles having identical z or y coordinates is negligible. If we assume there
are no restrictions on the orderings such as those in Eqgs. (1), there are N! ways of
sorting N nodes into an N, x N, data structure. The nodes can be sorted into the
data structure by first selecting N, nodes out of N to form the bottom row, then
selecting N, nodes out of N — N, to form the second row and so on until all the
rows have been constructed. There are N,! allowed permutations of the nodes in
each row, resulting in N! ways of sorting the nodes into the data structure. If the
MLG constraints on the z-coordinates are imposed, only a single permutation of the
nodes in each row is allowed, reducing the upper limit on possible MLG orderings
t0 Nmar = NY/(N!)Nv. This limit can be further reduced by imposing the MLG
inequalities on the y-coordinates. There is only one ordering of the N, rows such that
the coordinate inequalities on the first column of nodes are satisfied. This reduces
the upper limit on the number of MLG’s to nmer = (N!/(N!)MN,!). This line
of reasoning is also valid if the nodes are first sorted into columns and then the
coordinate inequalities on the first row of nodes is imposed, with the roles of N, and
N, exchanged in the final expression. Since we are deriving upper bounds to the
number of MLG orderings, the expression which yields the smaller number of MLG’s
should be taken as the upper limit. At this point, the orderings of nodes are analogous
to a tangled mop head in which one end of each strand is fixed and all the strands
are allowed to weave and cross as long as they do not bend back on themselves.
Unfortunately, after the monotonicity conditions on the rows and a single column are
satisfied, it is impossible to continue the combinatorial arguments along these lines

without taking into consideration the actual placements of the nodes. This result is



not surprising since for systems as small as four nodes, the number of allowed 2 x 2
MLG orderings is not unique, but depends on the actual spatial arrangement of the
nodes, as shown in Figure 2.

Attempts were made to generate all of the allowed MLG 6rderings for small
systems of nodes. The purpose of these calculations was two-fold. The first was to
determine the number of MLG’s for typical sets of nodes that might be encountered
in a molecular dynamics or DSMC calculation where the nodes are spread relatively
evenly in physical space. The second purpose is perhaps more important. Once we
have a full set of MLG orderings, it is possible to determine the range and distribution
of MLG properties. A brute force approach in which all N! permutations of the nodes
are tested against the MLG coordinate inequalities becomes impractical for systems
of size larger than 3 x 3. A more efficient algorithm used on systems up to size 5 x 5
is described in detail in the appendix.

Table 1 shows the range in the number of allowed MLG’s for typical node ar-
rangements for 2 x 2, 3 x3, 4 x4 and 5 X 5 systems. Although the numbers of allowed
MLG orderings are very small compared to the estimates of the upper-bound nmqes
derived above, there are stiil a very large number of possible orderings for even small
systems. The largest system (5 x 5) for which we can explicitly generate all allowed
orderings is at least an order of magnitude smaller than a minimum-size system that
would be used in an MD simulation of a gas or liquid. Still, for a system of this size,
there are typically more than 10000 allowed MLG orderings. The number of MLG
orderings increases very rapidly with system size.

For all but the smallest systems, exact enumeration of all MLG’s becomes im-
practical. A Monte Carlo approach in which node orderings are chosen at random
and then tested against coordinate inequalities is also not a viable alternative for es-

timating the number of MLG orderings since the fraction of node permutations which




satisfy the MLG inequalities is very small. In another approach, numerical experi-
ments were carried out in which the nodes were placed in a random order and then
restored to MLG order by swapping data between adjacent nodes until the mono-
tonicity conditions are satisfied. This technique can only be used to give a lower
bound on the number of orderings since it is impossible to be certain that all MLG’s
are found. In fact, it is likely that the majority of the poorly structured MLG’s are
not encountered. Such a calculation on a 6 x 6 system indicates that a minimum of
75,000 MLG’s are allowed for a typical arrangement of nodes. For systems of sizes
normally used in molecular dynamics simulations, the number of orderings is expected

to be exceedingly large.

ITII. MLG DIAGNOSTICS AND STABILITY
Various statistical quantities can be used to give a good measure of the overall
quality of an MLG. One useful set of parameters is the average link lengths between

index neighbors in the MLG, where the individual links lengths are defined as

zlink(i’j) = Il‘(l + 1’]) - r(iaj)lv (2&)

ylink(i1j) = Ir(z,] + 1) - I‘(Z,])l . (2b)

For a set of MLG’s corresponding to the same set of nodes, the ones with the smaller
average link lengths tend to be better structured. Another useful set of parameters is
the averages of the normalized dot products of vectors joining near neighbors with the
unit normals. The normalized dot products are defined in terms of the node positions

and link lengths as

:l:(i-l~1,j)—.’l:(i,j) (3&)

Faalind) = T )



.. 1,7+ 1) —y(s,J
ydot(z,1)=y( J ‘) y(6, 7). (3b)
Ylink(i,5)

The average dot products are a measure of the directionality of the links joining near
neighbors in index space. For a set of nodes arranged on a square lattice, or a higher-
dimensional generalization of a square lattice, it is possible to find an optimal MLG
in which all dot products are equal to one. For random distributions of nodes, the
MLG’s with the larger average dot products are better structured.

The grid diagnostics defined in Egs. (2) and (3) can be averaged over all axes to
give an overall measure of the quality of the MLG. However, because it is possible
for an MLG to have diagnostic values indicative of good grid quality along one axis
and not the others, it is useful to retain the quantities over each individual axis. This
is illustrated in Figure 3 which displays the values of the grid diagnostics for the
complete set of 5 x 5 MLG’s corresponding to a single set of 25 nodes. The majority
of the MLG’s have values for the diagnostics that lie within a relatively small range,
while a small fraction of the MLG’s have either very good or very poor diagnostic
values.

The average diagnostics defined above are useful measures of MLG quality and
are relatively inexpensive to compute, but they may underestimate the influence
of small locally distorted regions of the grid. This is important because it is the
most poorly structured regions of the grid that determine the size of the maximum
index offset required in a molecular dynamics simulation. The use of SGR has been
shown to result in better-structured grids, but the improvements due to SGR are only
weakly reflected in the average grid diagnostics. To overcome the weaknesses of the
average grid diagnostics and to provide an explanation for the success of SGR, we
have developed the concept of grid stability.

The locations of N nodes embedded in a d-dimensional space can be described by



a single point in an N d-dimensional coordinate space. As the positions of the nodes
are perturbed, the point describing the state of the system traces out a volume in
the Nd-coordinate space. We can imagine ordering the nodes in a particular MLG
and then perturbing the node positions. For certain displacements of the nodes, the
MLG coordinate inequalities remain satisfied, while other displacements result in a
violation of the coordinate inequalities. We define MLG stability to be proportional
to the volume of coordinate space over which the system of nodes can be perturbed
without violating the monotonicity conditions for the grid.

In practice, the calculation of the volume of coordinate space is not practical since
it involves simultaneously perturbing each node over each of its degrees of freedom.
As a lowest-order approximation, the volume of coordinate space can be estimated
by calculating the volume of an Nd-dimensional box whose sides are defined by the
maximum allowed displacements of each node over each degree of freedom. We denote
this estimate of MLG stability as S; since it is calculated by perturbing a single co-
ordinate at a time. Higher-order estimates S,, would be calculated from simultaneous
displacements of n coordinates.

Regardless of the order of approximation used in calculating MLG stability, re-
strictions must be imposed on the displacements of the nodes so that the volume of
coordinate space remains finite. Uniform translations of all nodes or breathing dis-
placements in which all node coordinates are multiplied by a constant avoid violating
the MLG coordinate inequalities, but lead to infinite contributions to the volume of
coordinate space. The calculation of S; is considerably simpler since the only restric-
tion that must be imposed is that edge nodes cannot be displaced from the remaining
nodes. An example of a disallowed displacement would be to move node (N, ) in the
positive z direction, where N, defines the first dimension of the data structure and j

is arbitrary. Taking into account the restrictions on displacements of edge nodes, the
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definition for S; for a 2d system is
Si= JI (@E+Li)-264) I GGi+1)-yG35). (@)
i=1,N; - L;allj alli;j=1,N, -1

The success of SGR can be explained in terms of the MLG stability. The regions of
the grid that have the greatest effect in reducing the MLG stability are exactly those
that are most poorly structured. At these locations, small displacements of the nodes
can lead to violations of the MLG coordinate inequalities. In the well-structured
regions of the grid, the nodes can be perturbed significantly before the monotonicity
conditions are violated. This is illustrated in Figure 4. By perturbing the node
positions, the poorly structured regions are given the opportunity to settle into a
more stable MLG configuration. We have found that there is an optimal maximum
node displacement of approximately one-half the internode separation. The existence
of an optimum displacement can be explained by the fact that node displacements that
are too small do not cause a restructuring of the locally unstable regions of the grid
while displacements that are too large result in an unnecessary global restructuring
of the grid.

Figure 5 shows the MLG stabilities as a function of the average link lengths
and average dot products. - In contrast to the average grid diagnostics which have
values that are constrained to lie within a narrow bounds, variation in the MLG
stability extends over approximately 14 orders of magnitude. Since the quantity 5,
is computed as a product over the projections of all the links, it is expected that
the range in stability would increase with system size. The majority of the MLG’s
are clustered around a central value, while a small fraction lie in the tails of the
distribution with very high or very low MLG stabilities.

Linear' correlation coefficients have been calculated between log(S;) and the av-

erage dot products and link lengths. The linear correlation coefficient between a pair

11



of variables r and y is given by

Li(zi —T)(y:i — ) .
V@i =22/ (vi - 7)?

Although the values of the coefficients, r(log(S;), dot) = 0.845 and r(log(S:), ink) =

(3)

r(:c,y) =

—0.748, indicate a relatively strong correlation, the MLG stability can vary over
several orders of magnitude for a given value of average dot product or link length.
For well-structured grids, the variation in stability at a fixed value of average grid

diagnostic can still be large, but is narrower than for the poorly structured grids.

IV. CONCLUSIONS

Even for small systems of nodes, the number of MLG orderings can be extremely
large and there can be significant variation in the number of MLG’s depending on
the spatial arrangements of the nodes. Extrapolating the results to systems of sizes
typical in molecular dynamics simulations, the number of possible MLG’s becomes,
for all practical purposes, infinite. Given the expense associated with generating
different MLG’s and the large number of possible MLG orderings, an exhaustive
search through all allowed orderings for the optimal MLG is impossible.

By examining complete sets of MLG’s for small systems, we have found that the
majority of the MLG’s are low quality, as measured by the average link lengths and
dot products. At first this result would seem to indicate that the MLG approach is
not satisfactory for the identification of neighboring nodes. Fortunately, even without
using grid optimization techniques such as SGR, the most poorly structured MLG’s
are very rarely encountered. In fact, it is quite difficult to find the worst MLG’s even
if the nodes are sorted from random order into MLG order. This is due to the strong
correlation between grid quality and stability. The small number of MLG’s that are

well-structured are also extremely stable.
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The grid perturbation that is part of SGR is implicitly included in MLG-based
molecular dynamics simulations. The MLG data structure is updated periodically
every timestep or every few timesteps during the simulation. The motion of the
particles effectively perturbs the system, putting it slightly out of MLG order. Re-
peatedly sorting the particles into MLG order from previous MLG orderings leads to
stable, well-structured grids.

Often MLG'’s are found that are generally well-structured, but which contain local
regions that are very poorly structured. SGR optimizes the MLG by restructuring
the locally distorted regions and driving the system in the direction of increased
stability, while leaving the well-structured regions of the grid relatively unchanged.
Improvements in the grids that are reflected only weakly in the average dot products
and link lengths result in significant improvements in the MLG stability, as measured

by the lowest-order estimate S;.
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APPENDIX: EXACT ENUMERATION OF MLG’S

For systems up to size 5 x 5, it was still possible to explicitly generate all allowed
MLG orderings. The search through all 25! possible node orderings was avoided by
using the algorithm described below. Approximately 20 minutes of CPU time was
required on a SUN-4 to generate the complete set of 5 x 5 MLG orderings for a typical
system of 25 nodes.

The nodes are first sorted in order of increasing z-coordinate. In addition to the
z- and y-coordinate values, each node is assigned an index which gives the rank of
the y-coordinate. Just by ordering the nodes in ascending z, the problem is reduced
from a search over N! to N!/(N;!)™ orderings. The outer loop of the program is
over the N!/(N — N;)!N,! allowed choices for the bottom row. The second row is
then chosen from the remaining (N — N;)!/(N — 2N,)!N,! possibilities. Proceeding
in this fashion, the search for all MLG orderings would require testing N!/(N!)v
permutations. Computational savings can be realized by immediately testing the y-
coordinate inequalities of row-2 against row-1 before proceeding to choose the next
row. In this way, calculations for a large number of node permutations can be avoided
by recognizing violations of the MLG inequalities before the entire grid is constructed.
Testing adjacent rows for satisfaction of the y-coordinate inequalities is performed
after the choice of each new row.

Additional computational savings can be realized by exploiting the fact that par-
ticular nodes must lie within certain rows. For example, the node with the minimum
y-coordinate must lie within the bottom row of the MLG. This can be shown by
the following argument. Allow the node with the minimum y-coordinate to lie in
_the second row. For the M‘LG inequalities to be satisfied, a node would have to be

found with a lower y-coordinate. Since such a node does not exist, the node with the

16



minimum y-coordinate must lie in the bottom row. Similarly, it can be shown that
the node with the second lowest y-coordinate must lie within the bottom two rows.
This argument can be extended to the (N, — 1) nodes with the lowest y-coordinates.
In a completely analogous fashion, the node with the maximum y-coordinate must
lie within the top row, etc. These conditions can be tested immediately upon con-
struction of the rows to quickly recognize node configurations that will not satisfy the
MLG inequalities. The results derived are completely general for any spatial arrange-
ment of nodes. For particular node arrangements, more constraints on the placements
of nodes within particular rows could be derived, thereby making the extension to

slightly larger systems computationally feasible.
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TABLE 1. Number of MLG orderings for systems of various sizes. Range in
values was obtained by explicitly generating all possible MLG orderings for different

spatial arrangements of nodes.

No. of nodes MLG shape No. ot MLGs

4 2% 2 I-2

9 3 x3 3-12

16 4 x4 91-405
25 9 X9 10130-97799
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(b)

Fig. 2 — Allowed 2 x 2 MLG orderings for four nodes in two dimensions. Solid and dashed lines
represent x and y links respectively. Configuration (a) has two allowed MLG’s while configuration
(b) has one possible MLG.
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Fig. 3(a) — Average x and y link lengths for all allowed 5 x 5§ MLG’s for a set of 25 nodes.
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Fig. 3(b) — Corresponding x and y average dot products.
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Fig. 4 — 4 x 4 MLG for 16 nodes. Solid and dashed lines represent x and y links respectively.
Arrows indicate maximum displacements of selected nodes before monotonicity conditions are
violated. Node (a) is at a relatively unstable region of the grid while node (b) is at a stable region.
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Fig. 5(a) — Average dot products plotted versus MLG stability for all allowed 5 x 5§ MLG’s for a
set of 25 nodes. The same spatial configuration of nodes was used to generate data for this figure
and Figure 3.
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Fig. 5(b) — Average link lengths plotted versus MLG stability. The same spatial configuration of
nodes was used to generate data for this figure and Figure 3.




